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1. INTRODUCTION

The advantages of Hyperspectral Imaging (HSI) over conventional remote sensing imaging has been well
recognized (Schowengerdt, 1983). HSI provides the user with spatial and spectral information about scene objects
and facilitates improved detection and identification over panchromatic and multispectral imagery. The predecessors
of present day HSI systems were the broad band spaceborne multi-spectral imaging systems like MSS and the more
recent TM, that provided data in 4 and 7 spectral bands respectively. Present airborne HSI systems like AVIRIS and
HYDICE operate in the VIS-SWIR spectral region (0.4-2.5 µm). They acquire data at a higher spectral resolution
(~ 10 nm) and produce data cubes in 224 and 210 bands respectively. The SEBASS sensor acquires data in the MWIR
and LWIR regions in 100 and 128 spectral bands each. 

The many spectral of bands of HSI sensors results in large sized data sets. For example, an AVIRIS image of
size 614 x 512 spatial pixels, occupies about 140 Mbytes in a 2 byte binary storage format. Future generation
ultraspectral sensors based on Imaging Fourier Transform spectrometers, will have an order of magnitude higher
resolution than the present grating spectrometers, and place a correspondingly higher burden on data storage and
transmission requirements. Data compression becomes increasingly important in (1) spaceborne HSI applications that
have constraints placed on onboard storage, and data transmission bandwidths, and (2) real-time tactical UAV
applications required to transmit imagery to ground stations. Increased onboard storage enhances the strategic and
commercial significance of HSI by permitting larger area coverage. From an applications and tactical perspective,
algorithms that can operate directly on compressed data, benefit from quicker turnaround times. 

This work discusses issues related to real-time, lossy, hyperspectral data compression. The compression
/decompression algorithm’s performance is evaluated in terms of the reconstructed data’s fidelity, using raw sensor
data. It is important to develop suitable figures of merit (FOM), since the advantages of HSI in detecting small objects
based on subtle spectral differences, can be lost if the reconstruction process does not reproduce the original data
with sufficient fidelity. Several questions arise concerning definitions of data fidelity. For example, should this be
defined in terms of pure “SNR” type quantities or in terms of applications involving data exploitation algorithms.
Each position has its merits and demerits. These issues including real-time implementation are addressed in this
paper. The well-known Principal Component Transformation (PCT) is used as a reference technique. 

2. PCT BASED REAL-TIME COMPRESSION 

2.1. Algorithm Description 

PCT has been extensively utilized in remote sensing applications especially in the areas of image
classification and compression (Richards et al, 1999, Wang et al, 1995, Fung et al, 1987). PCT compresses by
removing redundant information due to spectral correlations that exist between bands in hyperspectral data. It is a
linear transformation technique that rotates data into a coordinate system where the variables (spectral bands) are no
longer correlated (Jollife, 1986, Richards and Jia, 1999, Therein, 1992, Parsons 1987). The rotation matrix that
decorrelates the spectral bands comprises of the eigenvectors obtained by diagonalizing the covariance matrix of the
data. Since the off diagonal elements of the covariance matrix measure the correlations between bands, the
transformation finds the coordinate frame in which these terms are zero. The covariance matrix is symmetric in
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structure and can therefore be diagonalized using an orthonormal transformation (Golub et al, 1996, Horn et-al,
1985). The new axes (eigenvectors or principal components, PCs) are organized in the order of decreasing variance
in the data. When this transformation is applied to the data by using only the first few principal axes or eigenvectors,
we capture most of the energy and also the dominant spectral features in the signal in very few dimensions. This
compact low dimensional representation of PCT transformed data is responsible for compression. The geometric
significance of the reduction in the data dimensionality with minimal loss of information is that in order to identify L
distinct classes of objects with spectra in K bands (where K >> L), we require at the most L distinct coordinate axes,
and often fewer than L suffice. The PCT transformed coefficients may themselves be subjected to further
compression by ways thresholding, quantization, entropy coding, predictor based encoding, etc. However, we limit
the current discussion to the PCT process only, and its effects on data fidelity. 

The mean and covariance matrix of an image cube are computed using all the pixels. The spectrum of each
pixel in the scene is represented by a K dimensional vector x (for example, K = 224 for AVIRIS data). Let N be the
total number of pixels in the image. The mean vector of this set, m is denoted by

                                               (1)m = E(x) = 1
N S i=1

N x i

where E(x) is the expectation of x. The covariance matrix of the data, ΣΣx, is given by

  (2)Sx = E{(x − m)(x − m)T} = 1
N S i=1

N (x i − m)(x i − m)T

The mean vector, m is also a K dimensional vector and the covariance matrix ΣΣx is a K×K symmetric matrix.
Diagonalizing this covariance matrix ΣΣx gives the required transformation matrix, G. An important property of Σx is
that it is not only symmetric but also positive, semi-definite. In other words, its eigenvalues, λ, are always m 0. The
eigenvectors (columns of G) corresponding to the largest few eigenvalues define the axes of maximal variance in the
data. The data show very little variance along the remaining principal directions (eigenvectors) and are rejected. The
initial principal components may be viewed as the bands where maximum energy is confined. The transformed data
are computed by retaining only the eigenvectors corresponding to the largest few (L) eigenvalues and zeroing the
rest. As a result, the transformation matrix G becomes rectangular with dimensions N×L. The transformed vectors
(pixels) are obtained by using the equation

                                                                               (3)y = GT (x − m)
where L is the number of eigenvectors retained in the transformation. Hence the dimension of a transformed pixel, y,
is L and the data compression ratio (CR) = . This expression for CR includes the burden of theNK/(NL + 2(K + 1)L)
transformation matrix and the mean pixel value that must also be transmitted as floating point numbers, together with
the transformed data. When N >> 2(K+1), the expression for CR ~ K/L. The inverse transform used to recover the
original data is a single step process given by:

                   (4)x= G y + m

2.2. Computational Complexity

The computational complexity of the PCT algorithm can be derived in terms of the previously defined image
parameters like N, K, and L. The computational requirements (MFLOPS) can be calculated by assuming N to be a
pixel rate instead of the number of pixels. The pixel rate is itself defined by the sensor data rate. There are 5 steps in
the PCT compression calculation: (i) mean, (ii) mean removal (iii) covariance matrix, (iv) diagonalization of
covariance matrix, and (v) data transformation/compression. Decompression is a single step process. The algorithm’s
computational complexity is summarized in Table I following Eqs. (1) to (4), in terms of atomic processor operations
like read, write, add, and multiply (R, W, A, M). The formulas for the complexity are scaled according to the number
of cycles required. For the Analog Devices SHARC DSP used in this work, R, A, and M are single cycle operations
whereas W requires 2 cycles. Hence the mean removal step requires NK writes operations but a total of 2NK CPU
cycles to compute. Further, operations involving R, A, and M can be done concurrently (in a single cycle) if the data
are pipelined. Any special computations like division (D), etc., must be accounted for appropriately by determining
the number of CPU cycles they require. Note that scaling or division by a constant α can be treated as a
multiplication by 1/α, and subtractions are equivalent to additions. The diagonalization procedure requires special
attention. It has a complexity ~ O(K3) but it is somewhat complicated to express in terms of atomic operations.
Instead, a numerical factor of 5 derived from simulations conducted on various hyperspectral data sets, has been used



to express it’s complexity (see table I). The exact time required here is non-deterministic as computation proceeds
until a convergence criterion is satisfied. The last column indicates the inherent parallelism or the parallelizability of
the various steps in the algorithm.

Fine      “NK2NKLNKLNKLDecompression6
Fine      “2NKLNKLNKLNKLTransform Data/ Compression5
Coarse “O(~5K3)Diagonalization4
Fine      “K2NK2, K2NK2NK2Covariance3
Fine      “2NKNKNKMean removal2
Fine grainKNKNKMean Calculation1

ParallelismW(2)M(1)A(1)R (1)OperationNo.

Table I: Computational complexity of PCT algorithm in terms of atomic CPU cycles. The numbers in parentheses
alongside the operations indicate the number of CPU cycles required.

The algorithm’s complexity allows us to develop computational strategies and design the multiprocessor
real-time compression system. The quadratic and cubic dependence of the algorithm’s complexity in the covariance
matrix calculations and diagonalization steps consume the bulk of the computation time. Spectral partitioning of data
therefore reduces the burden imposed by these stages drastically. In our implementation, we partition the data into
segments containing ~ 32 bands each. The resulting multiprocessor design is over 90% efficient in terms of
processor utilization. The effects of data partitioning on data fidelity are discussed later.

The PCT algorithm belongs to a class of parellizable algorithms where a single instruction/program can be
simultaneously executed on multiple data streams (SIMD/SPMD). This is an important distinction from other classes
comprising of sequential single instruction, single data problems, or those belonging to the multiple instruction,
multiple data (MIMD) type. Algorithms belonging to various classes are most efficiently implemented only if the
multiprocessor architecture and the processor attributes satisfy the class paradigm. The PCT algorithm supports fine
grain and coarse grain parallelism in different steps of the computation. We note from Table I that all stages of the
algorithm but one, support fine grain parallelism. This means that the data can be partitioned into very small sets, and
each set can be independently executed on a separate processor for parallelization and speedup. Intermediate results
computed on the various processors can be combined to get the overall result. This is possible only because of the
absence of data dependencies within a particular stage of the computation.

2.3. Multiprocessor System Design

The SPMD paradigm supported by the PCT algorithm has been implemented using the Analog Devices
Super Harvard Architecture (SHARC, model 21060) processor. The SHARC processor has a 40 MHz CPU and an
independent I/O processor. Each SHARC has 6 link ports operating at 40 Mbytes/s for multiprocessor
communications support. The independent I/O processor’s permits concurrent processing with I/O (ADSP User
Manual, 1997). Clusters of SHARCs are used to process large amounts of data, and each SHARC’s effective link port
bandwidth of 240 Mbytes/s permits efficient data flow across large networks. In recent years, real-time systems
involving over 100 SHARC processors have been developed for real-time radar and sonar signal processing
(Huxtable et-al, 1998, Mansfield et-al, 1998). 

Fig. 1 shows a schematic layout of the multiprocessing real-time compression system implemented using
board-level, commercial off the shelf components. It consists of a number of different industry standard SHARCpacs
that comprise the input, processing, and output modules. The input SHARCpac contains a single SHARC processor
and a field programmable gate array (FPGA) device, operating under the SHARC’s control. The FPGA connects to the
hyperspectral sensor using a custom interface. Data are double buffered on two embedded SHARCs (ES0 and ES1)
and alternately sent to a pipeline of 12 compression SHARCs after spectral partitioning. The compressed data are
double buffered on a pair of output SHARCs (ES2 and ES3), and finally written to a SCSI disk that is also under
SHARC control. 
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Figure 1: Schematic of multiprocessor architecture, interprocessor communication, and dataflow.

Interprocessor communications are handled using a combination of low level direct memory access (DMA)
transfers as well as high level communication libraries. Fig. 1 shows the data flow and link port connections in the
network. The input and output double buffers (on embedded SHARCs) involve direct processor to processor data
transfers. They are implemented using highly efficient low level DMA transfers that achieve close to the theoretical
maximum of 40 Mbytes/s, for even very small data packets (< 64 bytes). Data movement from the input double
buffers to the processing network of 12 SHARCs, and from there to the output double buffers, is a complex process
occurring over multiple link ports, and sometimes requires routing through intermediate SHARCs. High level
communication libraries are used here as they offer programming ease and flexibility. The penalty for using these
abstract high level functions is speed and performance. The maximum data transfer rate achievable for a 8K size
packet is about 32 Mbytes/s. All the communications functions used are non-blocking and therefore support
concurrent I/O and data processing. The present system is designed to handle sensor data rates up to 100 Mbits/s and
can be scaled to handle higher data rates if required, by adding more SHARCpacs.

3. DATA FIDELITY FIGURES OF MERIT

3.1.  Error metrics

We develop several error metrics to quantify reconstructed data fidelity after PCT compression. The various
metrics bear relevance to different applications. For example, global error metrics like SNR curves and error
distributions may be useful indicators of overall data quality for scientific applications. In addition to the global
metrics, pixel by pixel local image metrics based on signal to clutter ratio type of quantities, and rms error maps, will
likely be useful in tactical applications involving CFAR type detection algorithms. The objective here is to develop a
number of application independent metrics that will nevertheless provide useful indicators of the likely performance
in a particular application.

The symbol  in Eq. (4) indicates that the image pixel recovered after PCT compression and decompressionx
is not identical to the original pixel x because all eigenvectors were not used in the compression/decompression
process. However, the error or difference between x and  can quantified in a mean square sense using thex
eigenvalues of the transformation matrix G. It can be shown that the mean square difference between x and  isx
given by:

                                               (5)R = S j=1
K k j − S j=1

L k j = S j=L+1
K k j

Thus the mean square error of the PCT algorithm is given by the sum of the residual eigenvalues whose
eigenvectors were not employed for the transformation. If all the eigenvectors are used in the transformation matrix
G then L=K and the error becomes zero. This condition is of course useless for data compression, as the transformed



vector y is also K dimensional (like the input vector x). Eq. (5) can be used to maintain a constant error level by
varying the compression ratio (i.e., by varying the quantity L or the number of eigenvectors retained in G the
transformation). The eigenvalues usually decrease rapidly (and monotonically). Hence very few of the corresponding
eigenvectors are required to render the above error small, thus achieving a reasonable compression factor at an
acceptable/user defined error level. The operating compression ratio for a given sensor may be determined from the
data fidelity requirements of the application, and the sensor’s SNR specifications. 

A basic global metric is the SNR of the PCT processed data. We derive the SNR from the true rms distortion
error caused by the PCT. The rms error erms, is a K dimensional vector defined as

          (6)erms = ( 1
N−1 ) S i=1

N (xi − x i)2

xi
2

where x and  are the raw and PCT processed images respectively, and N is the number of scene pixels. The abovex
summation is implied for each band of the image. The SNR metric is then defined as SNR = 1/erms, and it is also a K
dimensional vector. The so-called noise (of our SNR metric) is really the error distortion introduced in the data by the
compression/decompression algorithm. We note that the SNR obtained here will be lower than the well known PSNR
which normalizes the rms error using the peak signal (for example, the denominator in eqn. (6) would read 255
instead of xi, for 8 bit data). In addition to SNR curves at different operating points or compression ratios (CR), other
quantities like min/max error, average error, and error standard deviation, all calculated band by band, are useful
global data fidelity metrics. Measures like SNR may be used to set operating points on ROC curves, in target
detection applications. 

Local pixel metrics in the form of error maps, like band averaged error and signal to clutter ratio (SCR) type
metrics, allow direct error visualization by comparing these maps to the original image. SCR is a measure of a pixels
detectability and is a relevant metric for target detection applications. It is a scalar quantity defined as 

                   (7)scr = yT S−1 x
where Σ-1 is the image background covariance matrix, x is a scene pixel, and y is a required target pixel selected from
a library. The geometric significance of this expression is one of a dot product of x and y after projecting the vectors
into the subspace of Σ−1 (Therrein, 1992, Stocker et al, 1990). In order to use this metric meaningfully, we calculate
the ratio of SCR (ρ)  after and before PCT processing.

          (8)q =
xT S

−1
x

xT S−1 x

The ~ variables in the numerator correspond to the PCT processed image and the ones in the denominator
refer to the original image. Since there is no a priori target pixel, we compare a pixel to itself in its surrounding
defined by Σ-1. The ratio ρ should remain as close to one as possible, thus indicating that a given pixel has not
changed relative to its background. If ρ > 1, it indicates the possibility of increased false alarms, and when ρ < 1, we
have a loss of detection sensitivity. Another local metric is a pixel error map that provides a band averaged map of
errors. This is a useful visual aid for characterizing the algorithm’s performance, by determining the pixels where the
greatest errors occur. 

3.2. Data Analysis

It is essential to note that PCT is an optimal data compression technique based on second order Gaussian
statistics. It compresses by decorrelating data to remove redundant information, and organizing the results along axes
of decreasing variance. Hence very few axes are required to capture most of the signal’s energy. These “few” axes
determine the natural minimum dimensionality of the data. Clearly, the fewer the number of axes, the lower the
minimum dimensionality, and the higher the compression that cane be attained. The eigenvalues of the PCT
transformation are used to determine this dimensionality of the compressed data. Hence, the issue of data
dimensionality becomes central to PCT compression. Data dimensionality is influenced by a scene’s content; the
larger the number of “distinct features or variability”, the higher the dimensionality. In general, we expect spatially
large scenes to have a higher dimensionality than smaller ones. Urban scenes will normally have higher
dimensionality than corresponding size rural ones. In addition to scene related dimensionality, the sensor’s noise
characteristics also influence data dimensionality. High sensor noise will produce scatter in the data distributions and



thus increase their intrinsic dimensionality. We note here that since PCT makes an implicit assumption of Gaussian
statistics, the higher order moments in data distribution should be identically zero. Violation of this condition will
result in poor data quality after reconstruction. It is well known that natural scenes rarely exhibit Gaussian data
distributions, and this may be a natural limitation of the PCT compression technique (Chen et al, 1987). The situation
may be alleviated by selecting a large enough number of pixels (typically 10-100 x number of bands) so that the data
distributions in each band may approach Gaussian. Despite the above limitation, our results from AVIRIS indicate an
excellent compression performance using PCT.

The PCT algorithm’s performance was benchmarked using raw data from the AVIRIS sensor, prior to
radiometric calibration or geo-rectification. Since PCT removes spectral correlations to achieve compression, its
real-time performance can be truly characterized only by testing on raw data. Most HSI instruments employ multiple
spectrometers and detectors to span the sensor’s spectral range (for example, AVIRIS has 4 spectrometers and 4
linear detector arrays). The raw data from these instruments will exhibit different correlation properties from their
calibrated counterparts for reasons such as different -detector QEs, pixel nonuniformities and dark current, amplifier
gains, and optical throughput of the different spectrometer assemblies. All these factors affect the data’s correlation
properties and hence impact the PCT algorithm’s performance.

Figure 2: AVIRIS scenes from low altitude 1998 flight of San Joaqium Valley
(c) High variability (H)(b) Medium variability (M)(a) Low variability (L)

Figure 3: (a) SNRs for 3 scenes at fixed CR = 4, and (b) band averaged SNR vs. CR. Bottom curve in both graphs
shows results from 12 bit JPEG for scene M.
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Fig. 2 shows three test images of size 250 x 150 spatial pixels x 224 spectral bands (AVIRIS Data, 1998).
These images qualitatively represent scenes of low, medium, and high variability and are labeled as L, M, and H
respectively. The terms low, medium and high “variability” are used for these scenes in the context of their data
dimensionality, determined by their eigenvalues, as discussed earlier. Fig. 2(a) comprises of 2 or 3 homogenous
fields and uncultivated land. Fig. 2(b) is a mix of several distinct cultivated and uncultivated fields and Fig. 2(c) is a
mixture of urban and rural areas.

Fig. 3(a) shows the SNR curves for the 3 images at a fixed compression ratio (CR) of 4. The SNRs in the
visible bands are comparable for the 3 images but the SNR values for low variability image L are higher in the SWIR
bands. The bottom-most curve shows a 12 bit JPEG compression for the medium variability scene M, for
comparison. It is clear from the poor SNR curve for JPEG that it is not a very suitable compression technique for



hyperspectral data. The SNR curve for the AVIRIS sensor is also shown alongside for comparison. The AVIRIS SNR
values are ~ 1000 in the VNIR bands whereas the PCT SNR are ~ 400. The results from PCT are however comparable
to AVIRIS SNR in the SWIR bands. We therefore have an apparent loss of data fidelity in the VIS-NIR bands after
PCT compression. The reason for this is that the raw signal intensity in these bands is of the order of 500-800 DN
(mean pixel spectrum in Figs. 4(a) and 4(b), for example). Hence an error of 1-2 DN introduced during the PCT
process would give rise to an SNR of about 400. Included in this is the numerical round off error of the order of 1 DN
(two truncation errors of ±1/2 of floating point results to integer during compression and decompression). This
leaves room of a computational error of about 1 DN during PCT. In reality, the error magnitudes resulting from PCT
compression are of the order of 1-2 DN (see Fig. 4(b)) which is numerically near lossless. Fig. 3(b) shows the band
averaged SNRs as a function of CR. As we increase the CR the effect of intrinsic data dimensionality becomes clear.
While the SNRs are close together at CR = 4, they are quite different when CR = 25. Here, the image with the least
spatial variability (L) has the highest SNR whereas the one with highest variability (H) suffers maximum loss.

Figure 4: Band by band (a) maximum error and (b) average error, for medium variability image M as a function
of compression ratio. Top curves shows the mean spectrum as a reference (second y-axis on right). 
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Fig. 4 shows the maximum and average errors that occur in each band as a function of CR, in the medium
variability image M. Note that the mean error is less than 2 counts in nearly all bands even at the highest CR. In
comparison the mean pixel spectrum is several 100’s of counts. The error standard deviation curves (not shown)
have magnitudes approximately equal to the mean errors. All these metrics together furnish a global picture of the
kind of data fidelity that can be expected by applying PCT on AVIRIS data. The mean image spectrum in Figs. 4(a)
and 4(b) shows sharp absorption features from atmospheric constituents like O2, H2O and CO2. After radiometric
calibration, data from these absorption bands are used to retrieve the atmospheric parameters, and to subsequently
convert the calibrated radiance data cube into a reflectance cube. It is worth noting that the PCT errors in these bands
are not necessarily higher than in others. This observation is significant for atmospheric retrieval.

Global metrics involving the SCR ratio ρ and error maps are illustrated in Fig. 5 using image L as an
example. Fig. 5(a)-(c) show image L, the normalized error map, and the SCR ratio, all at CR=12. Fig. 5(a) also shows
a boxed area indicating outlier pixels. The normalized error (εε) for a pixel is obtained by dividing the band averaged
absolute pixel error, by the band averaged signal (Eq. (9)). The bright portions of Figs. 5(b) and 5(c) indicate higher
values. Note that the boxed outlier region appears as bright spots in both Figs. 5(b) and 5(c). Fig. 5(b) also manifests
the roads as regions of higher error whereas they do not appear in the SCR ratio map.

(9)e = S i=1
K | (xi − x i) |

S i=1
K

xi

Fig. 5(d) shows the mean spectrum of image L together with an outlier pixel from the boxed area. The same
pixel spectrum reconstructed after PCT (at CR=12) lies on top of the outlier, and the two are visually
indistinguishable. The figure also shows the difference between the two spectra plotted against a second y-axis. The
error magnitude is < 2 counts while the signal values are in the 150-200 DN range. Figs. 5(e) and 5(f) show
horizontal profiles of the normalized error map (Fig. 5(b)) and the SCR ratio map (Fig. 5(c)). These profiles run



through the outlier pixel area and appear as spikes. The dual spikes in the Fig. 5(e) correspond to the outliers in the
boxed region and the road that appears nearby. The same outlier appears as a spike in the SCR ratio profile of Fig.
5(f) indicating that this pixel is now more prominent as an outlier after PCT. In general, the values of ρ remain very
close to 1 thereby indicating that the pixel properties have changed very little relative to their background (average ρ
= 0.999990, and standard deviation = 0.001049 for image L at CR=12). The robustness of the SCR ratio even at high
CR may indicate the viability of PCT based compression in applications involving subpixel analysis. 

Figure 5: (a) Image L with box enclosure showing outlier pixels, (b) Normalized error map for CR=12, where
bright regions indicate larger errors, (c) SCR ratio ρ for CR = 12, outlier pixels appear bright, (d) Mean spectrum
for image L together with a single outlier pixel spectrum from the boxed region. The PCT processed spectrum for

the same outlier lies over the original spectrum, and is within the figure’s visual resolution. The error between
them is plotted on the bottom against a 2nd Y-axis. (e) Horizontal profile of normalized error map in 5(b). The

two spikes correspond to an outlier in the boxed area shown in 5(a) and the road nearby, (f) Horizontal profile of
SCR ratio in 5(c). The spike corresponds to the outlier. 
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3.3. Effects of Spectral Partitioning

Spectral partitioning of data is desirable from a computational standpoint. From Table I, we note the O(K2)
and O(K3) complexities of the covariance matrix calculation and its subsequent diagonalization. Hence, reducing the
number of bands (K) via partitioning can therefore reduce the computational burden significantly. The best method
for selecting breakpoints to spectrally partition data is by examine the correlation matrix of the unpartitioned image.
The natural partition points occur when the correlation matrix values change abruptly. This is shown in Fig. 6 using
the correlation matrices from images H and L. The bright regions have mean correlation values > 0.9 and the dark
regions have values that are near zero or negative.

We use Fig. 6(a) to examine the effects of spectral partitioning on the SNR and compression ratio. Data
from scenes H and M are spectrally partitioned into two sets comprising of 112 bands each, as shown by the white
squares in Fig. 6(a). Recall that M was considered as having moderate variability, and H that contains a mixture of
rural and urban settings, was considered a high variability scene. Fig. 7(a) shows the band averaged SNRs plotted
vs. CR for both spectral partitions of the above images. The first partition corresponds to the VNIR bands, and the
second to the SWIR bands. Fig. 7(b) shows the normalized eigenvalues after PCT in image H. The eigenvalues for the
SWIR bands reduce in magnitude faster than the VNIR bands, indicating a lower dimensionality of the SWIR data.
The results for M are similar.



(b)(a)
Figure 6: Spectral partitioning based on correlation matrices. Bright regions indicate correlation values > 0.9,

(a) Image H, white squares indicate 2 x 112 block partitions, and (b) Image L, black squares indicate 4 variable size
partitions of ~ 40, 70, 50, and 60 bands each.

At low CR, the VNIR bands exhibit a higher SNR than the SWIR bands. This is because the natural SNR of
the sensor data are high in the VNIR bands due to the greater solar radiation present in these bands, as compared with
the SWIR bands. The data dimensionality problem does not manifest at low CR because the large number of PCs used
here sufficiently captures all the signal. However, the SNR curves for H are always below those of M because H has
greater variability. As CR increases, we notice a crossover between the VNIR and SWIR snr values, and the latter are
now larger. This is because the VNIR and SWIR bands themselves have considerably different dimensionality or
scene variability. The SWIR spectrum is dominated by the tapering solar blackbody radiation curve strongly
modulated by H20 and CO2 absorption bands. Most natural materials also have very slowly varying reflectance
spectra in these bands. All these factors together contribute to making the dimensionality of the SWIR bands very
low. Hence the SWIR bands can withstand higher CRs than the higher dimension VNIR bands.

Figure 7: (a) Average SNRs vs. CR for scenes M and H, and (b) Normalized eigenvalues for VNIR and SWIR
bands of image H.
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4. SUMMARY AND CONCLUSIONS

This paper analyzed properties of raw AVIRIS hyperspectral data from a data compression perspective,
using the PCT as a reference method. The algorithm’s SPMD nature was effectively exploited to implement a
real-time multiprocessor data compression system, using off the shelf components. A number of benchmark criteria
error visualization methods were developed to analyze data fidelity. It was shown that data dimensionality that is
related to scene content/variability played a critical role in PCT based compression. Spectral partitioning revealed
that higher SNRs were obtainable in the SWIR than the VIS-NIR bands, at high compression ratios. Even under high
CRs (>10), the SCRs appear to remain robust throughout the image. Subtle spectral features of distant outlier pixels
were also seen to be well preserved at high CRs. The implication for spectral library-based detection algorithms is
that PCT could be a reliable hyperspectral compression technique, in subpixel analysis type applications. This bears
further investigation.



Overall, our studies indicate that PCT holds excellent promise as a hyperspectral data compression
technique. The success of PCT using raw AVIRIS data, is in part due to the high quality of the sensor data. SNR
values of several 100s were obtained for compression ratios in the range of 4-25. These numbers can be further
increased by incorporating standard entropy coding techniques such as Huffman or Arithmetic coding, as a part of
the compression algorithm. We note that the above SNRs values correspond to rms errors in the range of 0.1% -
0.5%. Ultimately the extent of “acceptable” error which in turn determines how much compression can be achieved,
depends on the application. However, given that the accuracy of radiometric calibration is of the order of 1%-2%,
lossy hyperspectral data compression using a technique such as PCT may be viable even in scientific data collections.
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